2.5 Bayesian reasoning...

We are given initially

$$
\operatorname{prob}(+\mid \text { disease })=0.9
$$

Bayes:

$$
\operatorname{prob}(+\mid \text { disease }) \operatorname{prob}(\text { disease })=\operatorname{prob}(\text { disease } \mid+) \operatorname{prob}(+)
$$

or

$$
\operatorname{prob}(\text { disease } \mid+)=\frac{\operatorname{prob}(+\mid \text { disease }) \operatorname{prob}(\text { disease })}{\operatorname{prob}(+)}
$$

Find the denominator from normalization

$$
\operatorname{prob}(\text { disease } \mid+)+\operatorname{prob}(\text { no disease } \mid+)=1
$$

giving the final result

$$
\operatorname{prob}(\text { disease } \mid+)=\frac{\operatorname{prob}(+\mid \text { disease })}{\operatorname{prob}(+\mid \text { disease })+\operatorname{prob}(+\mid \text { no disease })\left(\frac{\text { prob }(\text { no disease })}{\text { prob(disease })}\right)}
$$

depending on the false-alarm rate and the general incidence of the problem. e.g. if $\operatorname{prob}($ disease $)=0.1$ and the false-alarm rate $\operatorname{prob}(+\mid$ no disease $)=0.01$

$$
\operatorname{prob}(\text { disease } \mid+)=0.91
$$

On the other hand, if the false-alarm rate were 0.1 , then

$$
\operatorname{prob}(\text { disease } \mid+)=0.5 .
$$

Think of the second case this way. Take 1000 people; 100 of them (1000×0.1) have the disease. Of these, 90 or (100×0.9) give a positive test. However, another 90 people $((1000-100) \times 0.1)$ give a positive test without having the disease. So, given a positive test, a fraction $90 /(90+90)$ actually have the disease.

